7,341 research outputs found

    Permafrost - physical aspects and carbon cycling, databases and uncertainties

    Get PDF
    Permafrost is defined as ground that remains below 0°C for at least 2 consecutive years. About 24% of the northern hemisphere land area is underlain by permafrost. The thawing of permafrost has the potential to influence the climate system through the release of carbon (C) from northern high latitude terrestrial ecosystems, but there is substantial uncertainty about the sensitivity of the C cycle to thawing permafrost. Soil C can be mobilized from permafrost in response to changes in air temperature, directional changes in water balance, fire, thermokarst, and flooding. Observation networks need to be implemented to understand responses of permafrost and C at a range of temporal and spatial scales. The understanding gained from these observation networks needs to be integrated into modeling frameworks capable of representing how the responses of permafrost C will influence the trajectory of climate in the future

    Lunar particle shadows and boundary layer experiment: Plasma and energetic particles on the Apollo 15 and 16 subsatellites

    Get PDF
    The lunar particle shadows and boundary layer experiments aboard the Apollo 15 and 16 subsatellites and scientific reduction and analysis of the data to date are discussed with emphasis on four major topics: solar particles; interplanetry particle phenomena; lunar interactions; and topology and dynamics of the magnetosphere at lunar orbit. The studies of solar and interplanetary particles concentrated on the low energy region which was essentially unexplored, and the studies of lunar interaction pointed up the transition from single particle to plasma characteristics. The analysis concentrated on the electron angular distributions as highly sensitive indicators of localized magnetization of the lunar surface. Magnetosphere experiments provided the first electric field measurements in the distant magnetotail, as well as comprehensive low energy particle measurements at lunar distance

    Many-body system with a four-parameter family of point interactions in one dimension

    Get PDF
    We consider a four-parameter family of point interactions in one dimension. This family is a generalization of the usual δ\delta-function potential. We examine a system consisting of many particles of equal masses that are interacting pairwise through such a generalized point interaction. We follow McGuire who obtained exact solutions for the system when the interaction is the δ\delta-function potential. We find exact bound states with the four-parameter family. For the scattering problem, however, we have not been so successful. This is because, as we point out, the condition of no diffraction that is crucial in McGuire's method is not satisfied except when the four-parameter family is essentially reduced to the δ\delta-function potential.Comment: 8 pages, 4 figure

    Anisotropic thermal expansion of Fe1.06Te and FeTe0.5Se0.5 single crystals

    Get PDF
    Heat capacity and anisotropic thermal expansion was measured for Fe1.06Te and FeTe0.5Se0.5 single crystals. Previously reported phase transitions are clearly seen in both measurements. In both cases the thermal expansion is anisotropic. The uniaxial pressure derivatives of the superconducting transition temperature in FeTe0.5Se0.5 inferred from the Ehrenfest relation have opposite signs for in-plane and c-axis pressures. Whereas the Gruneisen parameters for both materials are similar and only weakly temperature-dependent above ~ 80 K, at low temperatures (in the magnetically ordered phase) the magnetic contribution to the Gruneisen parameter in Fe1.06Te is significantly larger than electron and phonon contributions combined

    Personality Variation in Little Brown Bats

    Get PDF
    Animal personality or temperament refers to individual differences in behaviour that are repeatable over time and across contexts. Personality has been linked to life-history traits, energetic traits and fitness, with implications for the evolution of behaviour. Personality has been quantified for a range of taxa (e.g., fish, songbirds, small mammals) but, so far, there has been little work on personality in bats, despite their diversity and potential as a model taxon for comparative studies. We used a novel environment test to quantify personality in little brown bats (Myotis lucifugus) and assess the short-term repeatability of a range of behaviours. We tested the hypothesis that development influences values of personality traits and predicted that trait values associated with activity would increase between newly volant, pre-weaning young-of-the-year (YOY) and more mature, self-sufficient YOY. We identified personality dimensions that were consistent with past studies of other taxa and found that these traits were repeatable over a 24-hour period. Consistent with our prediction, older YOY captured at a fall swarming site prior to hibernation had higher activity scores than younger YOY bats captured at a maternity colony, suggesting that personality traits vary as development progresses in YOY bats. Thus, we found evidence of short-term consistency of personality within individuals but with the potential for temporal flexibility of traits, depending on age."Funding was provided by a Natural Sciences and Engineering Research Council (NSERC) Canada Graduate Scholarship to AKM and post-doctoral fellowship to LPM as well as grants to CKRW from NSERC, the Canada Foundation for Innovation, the Manitoba Research and Innovation Fund and Manitoba Hydro Forest Enhancement Program."https://journals.plos.org/plosone/article?id=10.1371/journal.pone.008023

    Dephasing Effects by Ferromagnetic Boundary on Resistivity in Disordered Metallic Layer

    Full text link
    The resistivity of disordered metallic layer sandwiched by two ferromagnetic layers at low-temperature is investigated theoretically. It is shown that the magnetic field acting at the interface does not affect the classical Boltzmann resistivity but causes a dephasing among electrons in the presence of the spin-orbit interaction, suppressing the anti-localization due to the spin-orbit interaction. The dephasing turns out to be stronger in the case where the magnetization of the two layers is parallel, contributing to a positive magnetoresistance close to a switching field at low temperature.Comment: 11 pages, 3 figures. Title modified in journal versio

    Exact calculation of spectral properties of a particle interacting with a one dimensional fermionic system

    Full text link
    Using the Bethe ansatz analysis as was reformulated by Edwards, we calculate the spectral properties of a particle interacting with a bath of fermions in one dimension for the case of equal particle-fermion masses. These are directly related to singularities apparent in optical experiments in one dimensional systems. The orthogonality catastrophe for the case of an infinite particle mass survives in the limit of equal masses. We find that the exponent β\beta of the quasiparticle weight, Z≃N−βZ\simeq N^{-\beta} is different for the two cases, and proportional to their respective phaseshifts at the Fermi surface; we present a simple physical argument for this difference. We also show that these exponents describe the low energy behavior of the spectral function, for repulsive as well as attractive interaction.Comment: 22 pages + 1 postscript figure, REVTE

    Perceptions of Treatment Plan Goals of People in Psychiatric Rehabilitation

    Get PDF
    Collaborative treatment planning is a process by which providers and consumers work together to set goals for treatment, choose between alternative services, and establish a plan. Research has not examined consumers’ views of their treatment plan goals. The present study examined ways in which consumers react to their treatment plan goals. Twenty-one interviews with Veterans engaged in psychiatric rehabilitation regarding goals listed in their treatment plan were analyzed using inductive content analysis. Reactions to treatment plan goals are reported. Analyses indicate people do not vary in a linear degree regarding agreement with treatment plan goals. Clinicians and researchers should examine the extent to which treatment plan goals are consistent with the consumer’s personal goals and self-concept

    VLA Survey of Dense Gas in Extended Green Objects: Prevalence of 25 GHz Methanol Masers

    Get PDF
    We present ∼1−4"\sim1-4" resolution Very Large Array (VLA) observations of four CH3_3OH J2−J1J_2-J_1-EE 25~GHz transitions (JJ=3, 5, 8, 10) along with 1.3~cm continuum toward 20 regions of active massive star formation containing Extended Green Objects (EGOs), 14 of which we have previously studied with the VLA in the Class~I 44~GHz and Class~II 6.7~GHz maser lines (Cyganowski et al. 2009). Sixteen regions are detected in at least one 25~GHz line (JJ=5), with 13 of 16 exhibiting maser emission. In total, we report 34 new sites of CH3_3OH maser emission and ten new sites of thermal CH3_3OH emission, significantly increasing the number of 25~GHz Class I CH3_3OH masers observed at high angular resolution. We identify probable or likely maser counterparts at 44~GHz for all 15 of the 25~GHz masers for which we have complementary data, providing further evidence that these masers trace similar physical conditions despite uncorrelated flux densities. The sites of thermal and maser emission of CH3_3OH are both predominantly associated with the 4.5 μ\mum emission from the EGO, and the presence of thermal CH3_3OH emission is accompanied by 1.3~cm continuum emission in 9 out of 10 cases. Of the 19 regions that exhibit 1.3~cm continuum emission, it is associated with the EGO in 16 cases (out of a total of 20 sites), 13 of which are new detections at 1.3~cm. Twelve of the 1.3~cm continuum sources are associated with 6.7~GHz maser emission and likely trace deeply-embedded massive protostars
    • …
    corecore